Technical
 Data

BBC sigma=irant b Logic units

Contents

R411.1 AND gate
R 412.1 Inverted AND gate 3/2
R 413 AND gate 3/2
R414 ORgat 3/3

Inverted AND gate R 412.1

Description

The AND gate R 411.1 contains three independent AND functions, two of which have two inputs and one with three inputs.

The output Q of one function gives a 1 -signal, as soon as a 1 -signal is applied simultaneously to all inputs of this function. In all other cases the output will carry a 0 -signal.
$Q=A \wedge B \wedge C$
$Q=A \cdot B \cdot C$

Order code for module:
GH R411 0001 R1
Order code for circuit symbol transparency: GH R700 1901 R1
Order code for application:
D GEF 31014 D
Identifying colour:
black
Mechanical structure: single width
Weight:
approx. 130 g

Technical data

Current consumption, 0 -signal at the outputs	5 mA
	1 -signal at the outputs
	27 mA
input	1 load
Fan out	100 loads

The functions are not delayed.

Description

The inverted AND gate R 412.1 contains three independent inverted AND functions, two of which have two inputs and one with three inputs.
The output Q of one function gives a 1 -signal, as soon as a 1 -signal stands at all true inputs (A and B) and an 0 -signal at the inverted input (C). A 1 -signal at the inverted input will block the output, consequently carrying a 0 -signal.
$Q=A \wedge B \wedge \bar{C}$
$Q=A \cdot B \cdot \bar{C}$

Order code for module:
Order code for circuit symbol transparency:
Order code for application:
Identifying colour:
Mechanical structure:
Weight:

Technical data

Current consumption, 0 -signal ai the ouipuis	5 mA
	1 -signal at the outputs
	27 mA
Input	1 load
Fan out	100 loads

[^0]
BBC
 sigmasifanie b
 BROWN BOVER!

 AND gate R 413

 AND gate R 413}

OR gate R 414

Description

The AND gate R 413 incorporates eight inputs and two outputs, one normal and one inverted. When a 1 -signal appears at the inputs $A \ldots \mathrm{H}$ then the output Q gives a 1 -signal and the output $\overline{\mathrm{Q}}$ a 0 -signal.
$Q=A \Lambda B \Lambda C \Lambda D \Lambda E \Lambda F \Lambda G \Lambda H$
$Q=A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H$
The output \bar{Q} always carries the opposite signal to output Q .

Order code for module:
GH R413 0000 V0
Order code for circuit symbol transparency: GH R700 1901 R32
Order code for application:
D GEF 31014 D
Identifying colour:
Mechanical structure: black
Weight:
single width
approx. 100 g

Technical data

Current consumption, 0 -signal at output Q	5 mA
	1-signal at output Q
Input	
Fan out at Q	10 mA
\quad at \bar{Q}	1 load

The function is not delayed.

Description

The OR gate R 414 contains three independent OR functions, two of which have two inputs and one with three inputs.

The output Q of one function will give a 1 -signal as soon as at least one input carries a 1 signal. An 0 -signal will not appear at the output unless all inputs of a function carry 0 -signal.
The input signals are not amplified, therefore not more than four OR functions may be connected directly in series with an input voltage of 24 V
The device will not burden the supply voltage.
$Q=A \vee B \vee C$
$Q=A+B+C$

Order code for module:
GH R4140000 Vo
Order code for circuit symbol transparency: GH R700 1901 R3
Order code for application
identifying colour:
Mechanical structure: single width approx. 110 g

Technical data

The input load depends on the load connected at the output side.
The fan out is a function of the units on the line side.
The functions are not delayed.

SIGMA-tronic controlled injection moulding machine

[^0]: The functions are not delayed.

